
���������	����
������������������
����
�������

����������	���
������������������

�������

��

�������� ������!�"	���#$�#���

%������&'�(����	�������������'���)����

Department of Electrical & Computer Engineering
Air Force Institute of Technology

2950 P Street, Wright-Patterson AFB, OH 45433-7765

Presented at AAAI-99 Workshop on Mixed-Initiative Intelligence, July 1999

Design Issues for Mixed-Initiative Agent Systems

Thomas C. Hartrum and Scott A. DeLoach
Department of Electrical and Computer Engineering

Air Force Institute of Technology
2950 P Street

Wright-Patterson AFB, Ohio 45433-7765
{thomas.hartrum scott.deloach}@afit.af.mil

Abstract
This paper addresses the effect of mixed-initiative systems
on multiagent systems design. A mixed-initiative system is
one in which humans interact directly with software agents
in a collaborative approach to problem solving. There are
two main levels at which multiagent systems are designed:
the domain level and the individual agent level. At the
domain level, there are few unique challenges to mixed-
initiative system design. However, at the individual agent
level, the agent itself must be designed to interact with the
human and the agent system, integrating the two into a
single system.

Introduction

Much of the current research related to intelligent agents
has focused on the capabilities and structure of individual
agents. However, in order to solve complex problems,
these agents must work cooperatively with other agents in
a heterogeneous environment. This is the domain of
Multiagent Systems. In multiagent systems, we are
interested in the coordinated behavior of a system of
individual agents to provide a system-level behavior. A
unique type of multiagent system is one in which humans
interact with software agents in a collaborative approach to
problem solving. The goal of this paper is to describe
some fundamental questions of how to design these mixed-
initiative agent-based systems. We start by looking at the
two fundamental levels at which design can take place –
the domain level and the individual agent level.

Multiagent Systems Engineering

Our research in Multiagent Systems Engineering (MaSE)
(DeLoach 1999) is an attempt to determine how to
engineer practical multiagent systems. It uses the
abstraction provided by multiagent systems for developing
intelligent, distributed software systems. Our MaSE
methodology is specifically designed for formal agent
system synthesis. That is, we describe a multiagent system
and its agents using formal languages and then transform
the formal specifications into code.

In this research, we view MaSE as a further abstraction of
the object-oriented paradigm where agents are at an even
higher level of abstraction than typical objects. Instead of

simple objects, with methods that can be invoked by other
objects, agents coordinate their actions via conversations to
accomplish individual and community goals. Interestingly,
this viewpoint sidesteps the issues regarding what is or is
not an agent. We view agents merely as a convenient
abstraction, which may or may not possess intelligence. In
this way, we handle intelligent and non-intelligent system
components equally within the same framework.

The MaSE methodology is similar to traditional software
engineering methodologies but specialized for use in the
distributed agent paradigm. The methodology follows the
basic steps shown in Figure 1. This methodology is
somewhat different in that we design general components
of our system before actually defining the system itself.

Figure 1. MaSE Methodology

Domain Level Design
The first step in MaSE is domain level design, which
captures the basic types and interactions between agents in
our system. By analyzing the complete domain, we get a
bigger view of the overall system context. This context
includes humans that interact with the system as well as
other systems that might impact the overall operation of
the system under development. At this level, whether or
not an agent has intelligence, how that intelligence is
captured, or how the agent is defined is not important. We
are only concerned with the high-level definition of the
types of agents, their goals, and their external interfaces.
At the domain level, we see design as a problem of

Domain Level
Design

Agent Level
Design

Component
Design

System
Design

2

modeling a distributed, collaborative system as a collection
of heterogeneous agents that communicate with each other.
The problem is partitioned so that each agent performs
some task that contributes to solving the larger problem.

Once we have identified the types of agents, we identify
possible interactions that might occur between different
types of agents. These interactions become agent
conversations, which are the specific types of
communications that may occur between agents in the
system. Conversations are defined using coordination
protocols, which describe the possible sequences of
messages that may be passed between agents to achieve
coordination. Inter-agent communication is critical to the
efficiency, effectiveness, and security of multiagent
systems and can be defined using general purpose, or
system specific, communication and security protocols.

Agent Level Design
The next step in MaSE is the agent level design. It is at
this level that we define (or reuse) the agent architectures
for each individual agent type. The agent architecture
defines the components within each agent and how they
interact. Here a formal specification of how the internal
components of the agent work together defines the agent
architecture while a specification of what each component
should do defines the components. Together the
specifications for the agent architecture and the
components define the behavior of the individual agent.
To integrate the agent into a multiagent system, each agent
participates in a specific set of conversations. To complete
the agent design, these conversations must be tied to
specific information stored or produced within the agent
itself. Once information required for specific
conversations is tied to the information within the agent,
the agent specification is complete.

Another agent-level issue is found in the case of agents
that act as an interface to a specific resource such as a
database or software tool. The formal specification for
such an agent must frequently model interfacing the agent
to an existing resource, such as a database or a software
tool.

Component Design
The component design level is the next obvious level of the
MaSE methodology. Once the agent architecture is
defined, the components specified must be designed.
Components being designed from scratch are defined using
formal specifications. However, if components exist that
can be re-used, it is our goal to define agents in such a way
as to take advantage of existing component enabling
technologies, such as JavaBeans, to allow us to reuse many
components. Obvious agent components include planners,
inference mechanisms, search algorithms, and learning
algorithms.

System Design
Finally, system design takes place once the design of the
domain, agents, and components are complete. By
defining the domain first, system design becomes an
exercise in picking the number and types of agents needed
as well as defining specified parameters within the agent
definition. Although not technically part of system design,
once a system has been defined we can verify certain
properties of interest such as safety and liveness.

Generating Multiagent Systems

Once the system has been completely specified from high-
level system issues to low-level agent component behavior,
the actual system can be generated. To formally generate
multiagent systems, formal tools must first be used to
specify the system. These formal specifications enable us
to reuse existing components, synthesize new components,
and analyze various properties of the system. The
resulting system can then be tailored to a specific agent
system style, such as used in JAFMAS (Chauhan 1997)
where agents are generated in Java and use specific low
level communications structures to carry out high-level
agent conversations.

Formal Representation of Agents

Software synthesis based on formal specifications has been
and continues to be a research area. Our current synthesis
tool supporting agent systems is based on the use of Z
specifications (Potter 1991) for defining hierarchically
composed systems of objects, including both structural and
behavioral aspects (Hartrum 1994). A simple example is
the following specification for an inventory agent.

number : seq CHAR
name : seq CHAR
price : 5
qty : 1

Stock

Inventory : 3 Stock
reorder : inventory → 1
closeout : 3 Stock

InventoryAgent

closeout ⊆ inventory
∀ x:closeout • reorder(x) = 0

Figure 2. Structural Specification

The formal Z model is then parsed into our synthesis tool
where reasoning software can verify various consistency

3

and correctness properties. The specification is then
transformed into a formal design model from which object-
oriented source code is generated.

The formal approach provides several benefits. It allows
an abstract and mathematically precise way to specify the
behavior of an agent system. It provides the mechanism
for automated verification of system properties. Finally, it
provides automated code generation.

Ξ InventoryAgent
item_wanted? : seq CHAR
price_limit? : seq CHAR
available! : 3 (seq CHAR x 1)

FindItems

available! =
 {x : inventory | name = item_wanted?
 ∧ price ≤ price_limit? • number, price}

Figure 3. Functional Specification

State Receiver Next State Action Send
Idle request(item, limit) Searching acknowledge
Searching Idle FindItems(item, limit, available) Result(available)

Figure 4. State Transition Table

The Z schema named Stock, Figure 2, is a formal
specification for an object class representing a single stock
item, with attributes representing its stock number, item
name, price, and quantity on hand. Similarly the schema
InventoryAgent is an aggregate representation of an
inventory system with a set of stock items (inventory), a
set of discontinued items (closeout), and a total function
mapping each stock item to its reorder level. The lower
part of the schema represents invariant constraints, in this
case that the closeout items are included in the inventory
set, and that the reorder point for all closeout items is zero.
The agent can perform a task, specified in Figure 3, of
finding the set of stock items with a specified name whose
price are below a certain limit. The output of this task
(essentially a function, or process) is a set of item number
and price pairs. Finally, the dynamic behavior specified in
the state transition table indicates that the agent waits in the
Idle state until it receives a request for inventory
information. After sending an acknowledgement to the
requestor it enters the Searching state and invokes the
FindItem task. Upon finishing, it sends the result to the
requestor and resumes the Idle state.

Mixed-Initiative Issues

A mixed-initiative agent system is one in which some of
the agents are pure software, frequently interfaced to a
database or software tool resource, and some of the agents
are effectively human in-the-loop experts. Human/agents,
which we define as software agents interfaced to a human
as their local “resource,” represent the latter. As implied

by the name, a human/agent is really a team consisting of a
human and an interface agent, which allows the human to
interface to the rest of the system. We see three models of
interaction between these human/agents and the associated
multiagent system.

• Client-server with the human as client. In this
model the human basically inputs a query to its
interface agent, who, after coordinating with other
agents in the system as needed, provides a response
back to the human. This process could be a simple
query-answer session or could involve asking the
human for clarification or additional information.
A variation of this role is when the human inputs a
task to the agent to be performed, such as “activate
appropriate alarms.’’ The overall response to the
human may simply be acknowledgement of
accomplishment (or failure) of the task, or might
result in some information being returned, similar to
a query. Again the human might be asked for
additional information, clarification, or suggestions
on how to re-accomplish a failed task.

• Client-server with the human as server. In this
model, an online human might receive a query for
information from an agent acting on behalf of
another agent or human. For example the agent
might suddenly pop up and inquire about the
availability of a time block for a meeting. In this
case the human would provide a response that
would be returned to the original requestor. In this
model, the human may, or may not, receive any
formal feedback about the results given by the
answer provided. In addition, the human may need
to query the sender for more information for
clarification or even justification of the original
request.

• Peer-to-Peer. This model is more in the spirit of a
true collaborative approach. In this model a group
of software agents and human/agents cooperate to
solve a problem. The human participates in both
client and server roles at different times during the
session. Because this method of interaction
encompasses the first two, we will concentrate on it
for the remainder of the paper.

The issues of interest here are those unique to the mixed-
initiative concept. In the context of the two levels at which
multi-agent systems can be considered, the primary issues
for mixed-initiative systems seem to be at the individual
agent level. At the multiagent domain level, there are no
unique challenges since the interface agent part of the
human/agent will encapsulate the human and will look
identical to the software agents that comprise the rest of
the system. The only potential difference at the domain
level might be in terms of the response time. Whereas a
software agent will typically process messages fairly
quickly, the human part of the human/agent will usually be
significantly slower to respond. Even if the human

4

responds immediately, the total response time will
typically be seconds and may be minutes or hours,
depending on the length of the average coffee break.

At the individual agent level we see two primary factors
that affect the design of human/agent as compared to a
software agent. The first factor concerns the uniqueness of
the data structures and behaviors of a human/agent as
opposed to other software agents, and how this might
affect specific design issues. The second consideration
deals with the special case of interfacing to a “human”
resource. Clearly this could build on existing research into
user-interface-agents, wherein the agent learns the user’s
preferences and tailors the interface to that specific user.
However, a more direct concern involves defining the most
appropriate form of the interface (e.g. a table vs. a
diagram) based on matching a formal description of the
problem to formal specifications of the various
representation forms.

Human/agent Considerations

Since we see no significant issues regarding human/agents
at the domain level, we will address the rest of the paper to
the issues related to the individual human/agent design.
The first issue involves modeling the underlying
architecture and behavior of such a specialized agent. In a
human/agent the architecture needs to support both the
client and the server roles. Thus it needs to respond to ad
hoc inputs from the human as well as to asynchronous
inputs from other software agents. It must also handle
human responses to queries from other agents, as well as
send queries on behalf of the human. Clearly each
individual human/agent would have to be tailored to both
the particular problem being solved and to the individual
expertise of the human to which it must interface.
However, it would seem that the common parts could be
captured as a reusable architecture or set of architectures
on which an agent designer could build a particular agent.

The second issue involves the human-computer interface
through which the human/agent communicates with the
human. If all agent collaborators were human/agents,
communication via text frames (e.g., e-mail) would be
appropriate. However, in a mixed-initiative system, data
must be exchanged readily between human/agents and
fully automated agents. Thus the interface to the human
needs to support more formal data structures, including
tables, enumerated values, binary decisions, graphs and
other graphical representations, etc.

A Proposed Human/agent Model
We propose the following human/agent model. The
human/agent is basically a concurrent state machine, where
each state model represents a conversation. That is, the
human/agent can concurrently process multiple
simultaneous conversations. On the one hand, the

human/agent could receive multiple requests, overlapping
in time. Thus there would be multiple open tasks that the
human is working on at any given time. On the other
hand, in order to process a single request, the human might
need more information, and would send several requests
for needed information to the system. Thus there could
also be several pending requests for information at any one
time.

Within our model there are two types of human/agent
conversations. The first is transaction-based. In this
model, a single query comes to the human/agent and is
presented to the human. The human agent processes it,
possibly sending out one or more transaction-based
requests and waiting for their response before finishing the
task. When done, the human responds to the original query
in a single, final response by providing the necessary
information and invoking some form of submit, which the
human/agent then sends back to the requestor in a single
response message.

The other type of conversation in our model is
incremental-based. In this model several agents, including
the human/agent, share data that is incrementally updated.
The human/agent displays the shared information on the
screen, and dynamically updates it as other agents submit
incremental changes. Similar to a traditional blackboard
system, all agents effectively write information onto a
common blackboard, which is displayed for the human to
monitor at all times. For example, two university
departments may be collaborating to schedule courses in a
non-conflicting way. The “blackboard” would display the
current schedule, and both parties could independently add
courses to the schedule. A variant of this model would
allow each agent to register for the information it was
interested in, and only that information would be sent to it.
Continuing the previous example, another agent might be
concerned with scheduling classrooms. It would also need
to see the results of the two course-scheduling agents, and
for each course scheduled might need to access another
agent to determine course enrollment. However, neither of
the first two agents would be concerned with either room
information or enrollment information, and would simply
not register for that information.

Human/agent Design Issues
There are several design issues related to the human/agent
model described in the preceding section. While the model
is intended to represent any human/agent, clearly there will
be differences in the agents themselves depending
primarily on the type of problem support being provided
by the human and the particular preferences of the human
himself. Some of these are defined below.

1. What are the allowable queries to be sent to the
agent? This basically defines the agent’s interface
as seen by the rest of the system. The allowable

5

queries are obviously dependent on the types of
problems that the agent is designed to handle.

2. What input information needs to be supplied with
each query? Based on the answer to question 1,
this defines the information needed to support each
query.

3. What is the syntax of the query messages? Based
on questions 1 and 2, this ultimately defines the
syntax of the agent interface, as seen by the other
agents.

4. What information is needed to answer the query?
For each query, this defines the information that
makes up the required answer.

5. What is the syntax of the response messages?
Based on question 4, this also defines the syntax of
the agent interface, as seen by the other agents.

6. For each query, what is the appropriate form of
information exchange with the human? This
defines the appropriate form (or user-selectable
forms) in which to present the query and its
information to the human, and the form in which
the human will provide the response information.

7. For an incremental based approach, what
information needs to be presented, how should it be
presented, and what is the syntax of the
corresponding update messages? Basically
questions 1 through 6 need to be re-interpreted in
the context of the incremental-based approach.

It is interesting that the answers to these questions relate
directly the design of the human interface to the
human/agent as well as the system interface to the
human/agent. If generalized, the questions are also
applicable to software agents as well as human/agents.

It is our hypothesis that these design decisions can be
supported by a formally based design tool that would aid
the software engineer (agent designer) in specifying a
specific human/agent for a particular project in such a way
that the resulting agent code could be automatically
generated.

References

DeLoach, S. A. 1999, Multiagent Systems Engineering A
Methodology and Language for Designing Agent Systems.
to appear in Workshop Notes of Agent Oriented
Information Systems (AOIS ’99), Seattle WA, 1999.

Chauhan, D. 1997, JAFMAS: A Java-based Agent
Framework for Multiagent Systems Development and
Implementation, Thesis, ECECS Department, University of
Cincinnati.

Hartrum, T. C. and P. D. Bailor 1994, Teaching Formal
Extensions of Informal-Based Object-Oriented Analysis

Methodologies, 7th SEI CSEE Conference, San Antonio,
TX, Jan. 1994.

Potter, B. et at 1991, An Introduction to Formal
Specification and Z, Prentice Hall, 1991.

